Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 623: 646-659, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35598491

RESUMO

A carbon-containing Cu-based material (Cu@C) was used as photocatalyst for the degradation of a commonly food-industry azo-dye (tartrazine, also called Y5), under solar light at laboratory and pilot scale photoreactors. Important performance parameters such as dark adsorption capacity, catalyst́s loading and initial concentration of the dye were first optimized in a slurry photoreactor at laboratory scale under artificial solar light following the kinetics of degradation of the dye. Afterwards, the photocatalytic activity was investigated at pilot scale in a compound parabolic collector (CPC) photoreactor operating for 10 h of irradiation. The degradation of tartrazine is among the highest values reported for alternative metal oxide semiconductors, in both photoreactor configurations. Catalytic data revealed a 3 times faster degradation kinetics of tartrazine in the CPC photoreactor under natural solar light than in the slurry reactor under artificial solar light. This behavior indicates that a moderate photon flux in the CPC is more adequate to operate with the prepared photocatalyst, as it minimizes the recombination of charge carriers in the catalyst. This is important, since most of the photocatalytic tests designed to evaluate the activity of novel materials are frequently carried out under simulated solar light and disregard the impact of photon flux in outdoor conditions.


Assuntos
Luz Solar , Tartrazina , Compostos Azo , Catálise , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...